Enhancing the W State Fusion Process With a To oli Gate and a CNOT Gate via One-Way Quantum Computation and Linear Optics

نویسندگان

  • F. Diker
  • F. Ozaydin
  • M. Arik
چکیده

Creation of large-scale W state quantum networks is a key step for realization of various quantum information tasks. Regarding the photonics technology, a simple optical setup was proposed for the fusion of two W states. Recently it was shown that via a single Fredkin gate, this basic so-called fusion setup can be enhanced. However the main problem was that the probability of success of realization of Fredkin gate with linear optics is too low. In this work, we show that the same enhancement can be made possible via one To oli and one CNOT gate, instead of a Fredkin gate. Not only the probability of success of the combination of these two gates is much higher, than that of a single Fredkin gate via linear optics, but also there is another method for implementing our setup with current photonics technology, almost with a unity success probability: A hybrid circuit consisting of a To oli gate which can be implemented via one-way quantum computation on a weighted graph state of 8 qubits with a unity success probability and a linear optical CNOT gate which has a success probability close to unity. Therefore the preparation of polarization based encoded multi particle entangled W states of arbitrary sizes becomes considerably more e cient. DOI: 10.12693/APhysPolA.127.1189

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A near deterministic linear optical CNOT gate

quantum information, deterministic linear optical gates, conditional measurements, hybrid systems We show how to construct a near deterministic CNOT using several single photons sources, linear optics, photon number resolving quantum non-demolition detectors and feed-forward. This gate does not require the use of massively entangled states common to other implementations and is very efficient o...

متن کامل

Quantum Computation with Generalized Binomial States in Cavity Quantum Electrodynamics

Cavity quantum electrodynamics (CQED) has been shown to be suitable to quantum computation processing1 thanks to the high quality factors Q of cavities, control of atom-cavity interactions and long lifetimes of Rydberg atoms2. In this context, the information can be stored and processed by atoms and photons representing the quantum bits (qubits)3 and two approaches can be distinct: the “microwa...

متن کامل

Simple Scheme for Efficient Linear Optics Quantum Gates

We describe the construction of a conditional quantum control-not (CNOT) gate from linear optical elements following the program of Knill, Laflamme and Milburn [Nature 409, 46 (2001)]. We show that the basic operation of this gate can be tested using current technology. We then simplify the scheme significantly.

متن کامل

An Optical Setup for Deterministic Creation of Four Partite W state

In order to create polarization based entanglement networks of W4 state, we propose an optical setup, which uses only four horizontally polarized photons as resource which implies no entanglement requirement as a resource. This setup can generate target state deterministically, by operating several quantum optical gates, which can be realized with current photonics technology. The setup we prop...

متن کامل

Universal quantum computation with shutter logic

We show that universal quantum logic can be achieved using only linear optics and a quantum shutter device. With these elements, we design a quantum memory for any number of qubits and a CNOT gate which are the basis of a universal quantum computer. An interaction-free model for a quantum shutter is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015